研究生课程开设申请表
开课院(系、所):金沙js800000
课程申请开设类型: 新开□ 重开√ 更名□(请在□内打勾,下同)
课程 名称 | 中文 | 统计信号处理 | |||||||||||
英文 | Statistical Signal Processing | ||||||||||||
待分配课程编号 | MS004113 | 课程适用学位级别 | 博士 | 硕士 | √ | ||||||||
总学时 | 32 | 课内学时 | 32 | 学分 | 2 | 实践环节 | 课程设计 | 用机小时 | 16 | ||||
课程类别 | □公共基础 □ 专业基础 □ 专业必修 □√专业选修 | ||||||||||||
开课院(系) | 金沙js800000 | 开课学期 | 春季 | ||||||||||
考核方式 | A.√笔试(√开卷 □闭卷) B. □口试 C.□笔试与口试结合 D. □其他 | ||||||||||||
课程负责人 | 教师 姓名 | 方世良 | 职称 | 教授 | |||||||||
slfang@seu.edu.cn | 网页地址 | ||||||||||||
授课语言 | 课件地址 | ||||||||||||
适用学科范围 | 一级 | 所属一级学科名称 | 信息与通信工程 | ||||||||||
实验(案例)个数 | 2 | 先修课程 | 随机过程、信号与系统、数字信号处理 | ||||||||||
教学用书 | 教材名称 | 教材编者 | 出版社 | 出版年月 | 版次 | ||||||||
主要教材 | 统计信号处理基础 | 方世良 | |||||||||||
主要参考书 | 随机信号处理 | 陈炳和 | 国防工业出版社 | 1996 | |||||||||
An Introduction to statistical signal processing with Applications | M.D.Srinath &P.K.Rajasekaran | ||||||||||||
Detection,Estimation,and Modulation Theory | Harry L.Van Trees |
一、课程介绍(含教学目标、教学要求等)(300字以内)
建立从统计观点出发的信号处理基本观念,掌握信号处理的基本环节:检测、估计、统计识别、多元阵列统计信号处理的主要概念和方法。了解信号处理系统的总体设计思路和结构。为研究生进一步学习和研究信号处理奠定基础。
二、教学大纲(含章节目录):(可附页)
1 绪论
2 统计信号处理基础
3 检测理论
bayes准则
其它准则
接收机工作特性
多元假设检验
复合假设检验
序列检验
4背景噪声中信号的检测
确知信号检测
随机参量信号检测
高斯信号检测
最佳线性滤波器
5信号参量的估计
概述
估计量的性质
随机参量的估计
最大似然估计
线性最小均方估计
最小二乘估计
6波形估计
概述
维纳滤波
卡尔曼滤波
卡尔曼滤波的推广
最小二乘估计
7Robust检测和Robust估计初探
Robust检测
Robust估计
8信号频谱分析
9多元阵列信号处理
10统计信号分类识别
11 模糊函数
三、教学周历
周次 | 教学内容 | 教学方式 |
1 | 绪论,统计信号处理基础,bayes准则 | 讲课 |
2 | 检测理论:其它准则,接收机工作特性,多元假设检验,复合假设检验,序列检验 | 讲课 |
3 | 背景噪声中信号的检测:确知信号检测,随机参量信号检测,高斯信号检测 | 讲课 |
4 | 背景噪声中信号的检测:最佳线性滤波器 | 讲课 |
5 | 课程设计一:非白噪声中信号的检测 | 上机 |
6 | 信号参量的估计 | 讲课 |
7 | 波形估计:概述,维纳滤波,卡尔曼滤波及推广,最小二乘估计 | 讲课 |
8 | 课程设计二:卡尔曼滤波 | 上机 |
9 | Robust检测和Robust估计初探 | 讲课 |
10 | 信号频谱分析 | 讲课 |
11 | 阵列信号处理 | 讲课 |
12 | 统计信号分类识别 | 讲课 |
13 | 模糊函数 | 讲课 |
14 | 考试 | |
15 |
四、主讲教师简介:
方世良,男,1959年8月出生,教授,博士生导师。研究方向为信号与信息处理。主要从事信号处理、水声电子工程等领域的研究工作,对信号检测、估计和目标分类识别、阵列信号处理及软硬件系统开发等有较深入的研究。先后负责和参加十多项型号、设备、预研等重点科研项目的研究,获国家科技进步二、三等奖各一项,部级科技进步一、三等奖各二项,二等奖四项。现为中国声学学会青年工作委员会委员、中国声学学会理事、水声学会委员、江苏省声学学会副理事长。
五、任课教师信息(包括主讲教师):
任课 教师 | 学科 (专业) | 办公 电话 | 住宅 电话 | 手机 | 电子邮件 | 通讯地址 | 邮政 编码 |
方世良 | 信号与信息处理 | slfang@seu.edu.cn | 金沙js800000 | 210096 |
Application Form For Opening Graduate Courses
School (Department/Institute):School of Information Science and Engineering
Course Type: New Open □ Reopen √ Rename □(Please tick in □, the same below)
Course Name | Chinese | 统计信号处理 | |||||||||||||
English | Statistical Signal Processing | ||||||||||||||
Course Number | MS004113 | Type of Degree | Ph. D | Master | √ | ||||||||||
Total Credit Hours | 32 | In Class Credit Hours | 32 | Credit | 2 | Practice | Experiments | Computer-using Hours | 16 | ||||||
Course Type | □Public Fundamental □Major Fundamental □Major Compulsory □Major Elective | ||||||||||||||
School (Department) | School of Information Science and Engineering | Term | springtime | ||||||||||||
Examination | A.√Paper(□ √Open-book □ Closed-book)B. □Oral C. □Paper-oral Combination D. □ Others | ||||||||||||||
Chief Lecturer | Name | Fang Shiliang | Professional Title | Professer | |||||||||||
slfang@seu.edu.cn | Website | ||||||||||||||
Teaching Language used in Course | Chinense | Teaching Material Website | |||||||||||||
Applicable Range of Discipline | One class | Name of First-Class Discipline | Information and communication Engieering | ||||||||||||
Number of Experiment | 2 | Preliminary Courses | Probability and statistical process | ||||||||||||
Teaching Books | Textbook Title | Author | Publisher | Year of Publication | Edition Number | ||||||||||
Main Textbook | |||||||||||||||
Main Reference Books | Random signal processing | Chen Binhe | Publishing House of national defence Industry | 1996 | |||||||||||
An Introduction to statistical with Applications | M.D.Srinath &P.K.Rajasekaran | ||||||||||||||
Detection,Estimation, and Modulation Theory | Harry L.Van Trees | Jone Wiley &Sons,Inc | 2001 |
Course Introduction (including teaching goals and requirements) within 300 words:
In this course, the detection theory and the estimation theory are studied and some basic concepts about signal processing are established with statistical theory. The goal of this course is to develop these theories in a common mathematical framework and demonstrate how they can be used to solve wealth of practical problems in many diverse physical situations.
Teaching Syllabus (including the content of chapters and sections. A sheet can be attached):
1 Introduction
2 Bases of Statistical Signal Processing
3 The Detection Theory
Bayes Criterion
Other Criterion
Receive Operation Characteristic
M Hypotheses Tests
Composite Hypotheses Tests
Sequence Tests
4Detection of Signals in Noise Background
Detection of Known Signals
Detection of Random Parameters Signals
Detection of Gaossian Signals
Optimum Linear Filters
5Estimation of Signal Parameters
Introduction
Properties of Estimator
Estimation of Random Parameters
Maximum Likelihood Estimation
Linear Minimum Mean Square Estimation
Minimum Square Estimation
6Estimation of Waveforms
Introduction
Wiener Filters
Kalman Filters
Generalization of Kalman Filters
Minimum Square Estimation of Waveforms
7Robust Detection and Robust Estimation
Robust Detection
Robust Estimation
8Spectrum Analyse
9Array Signal Processing
10Statistical Signal Recognition
11 Fuzzy Function
Teaching Schedule:
Week | Course Content | Teaching Method |
1 | Introduction,Bases of Statistical Signal Processing, Bayes Criterion | Lecturing |
2 | Other Criterion, Receive Operation Characteristic M Hypotheses Tests, Composite Hypotheses Tests, Sequence Tests | Lecturing |
3 | Detection of Known Signals, Detection of Random Parameters Signals, Detection of Gaossian Signals | Lecturing |
4 | Optimum Linear Filters | Lecturing |
5 | Detection of Random Signals in Nonwhite Gaossian Noise | Experiment |
6 | Estimation of Signal Parameters | Lecturing |
7 | Wiener Filters, Kalman Filters,Minimum Square Estimation of Waveforms | Lecturing |
8 | Kalman Filters | Experiment |
9 | Robust Detection and Robust Estimation | Lecturing |
10 | Spectrum Analyse | Lecturing |
11 | Array Signal Processing | Lecturing |
12 | Statistical Signal Recognition | Lecturing |
13 | Fuzzy Function | Lecturing |
14 | examination | |
15 |
Note: 1.Above one, two, and three items are used as teaching Syllabus in Chinese and announced on the Chinese website of Graduate School. The four and five items are preserved in Graduate School.
2. Course terms: Spring, Autumn , and Spring-Autumn term.
3. The teaching languages for courses: Chinese, English or Chinese-English.
4. Applicable range of discipline: public, first-class discipline, second-class discipline, and third-class discipline.
5. Practice includes: experiment, investigation, research report, etc.
6. Teaching methods: lecture, seminar, practice, etc.
7. Examination for degree courses must be in paper.
8. Teaching material websites are those which have already been announced.
9. Brief introduction of chief lecturer should include: personal information (date of birth, gender, degree achieved, professional title), research direction, teaching and research achievements. (within 100-500 words)
Brief Introduction of Chief lecturer:
Name: Fang Shiliang
Sex: male
Birth date: August , 1960
Professional Title: Professor
Research specialities are underwater acoustic engineering, signal processingand its application. Research interests include acoustic signal detection, signal parameter estimation, target recognitionand so on. Many science researchprogramswere well achieved. Many science and technology progress awards were won.
Lecturer Information (include chief lecturer)
Lecturer | Discipline (major) | Office Phone Number | Home Phone Number | Mobile Phone Number | Address | Postcode | |
Fang Shiliang | Signal Processing | slfang@seu.edu.cn | 210096 |