职称:教授,博导,国家级高层次青年人才,金沙js800000青年首席教授 | |
办公室:金沙js800000九龙湖校区信息大楼508 | |
办公电话: | |
Email:jiananzhang@seu.edu.cn | |
学习经历: | |
2015年– 2020年加拿大卡尔顿大学,电子与计算机工程,博士 2013年– 2020年天津大学,电磁场与微波技术,博士 2009年– 2013年天津大学,电子信息工程,学士 | |
工作经历: | |
2020年1月– 2021年12月卡尔顿大学,电子系,助理研究员(合作导师:Q. J. Zhang教授,加拿大工程院院士、加拿大工程研究院院士,IEEE Fellow) 2022年1月 – 2023年12月金沙js800000,金沙js800000、毫米波全国重点实验室,副研究员 2024年1月 – 至今金沙js800000,青年首席教授 | |
个人简介: | |
张嘉男,教授、博导、金沙js800000青年首席教授,入选国家高层次青年人才、中央高校优秀青年团队、金沙js800000“紫金青年学者”。长期从事智能电磁计算、电磁超表面设计、量子计算在电磁问题中的应用等方向的研究,发表领域知名期刊/会议论文70余篇,其中第一/通讯作者身份发表包括领域顶级期刊IEEE TMTT和IEEE TAP在内的高质量期刊论文18篇;授权/受理射频EDA技术相关国家发明专利8项、美国专利1项;主持国家自然科学基金优秀青年(海外)、江苏省自然科学基金青年基金、华为横向合作等项目,同时参与国家重点研发计划、JWKJW重点项目等国家级项目。 | |
研究方向: | |
ü 智能电磁计算:数据驱动机器学习、物理驱动机器学习,基于人工智能的快速计算电磁学算法,雷达目标特性建模与优化设计 ü 电磁超表面设计:超表面电磁特性的正向预测与逆向设计,频率选择表面快速设计优化 ü 微波器件统计建模与优化:微波器件统计建模、成品率分析与优化设计 ü 量子计算:电磁量子算法设计、量子有限元仿真、量子机器学习 | |
获奖情况: | |
2023:国家级高层次青年人才 2023:中央高校优秀青年团队 2023:金沙js800000“科学研究先进个人” 2022:金沙js800000“紫金青年学者” 2022:江苏科技智库“优秀青年人才” | |
论文著作: | |
代表性学术论文:(*代表通讯作者) [1] J. N. Zhang, F. Feng, Q. J. Zhang, “Quantum computing method for solving electromagnetic problems based on the finite element method”, IEEE Trans. Microw. Theory Techn., vol. 72, no. 2, pp. 948-965, Feb. 2024. [2] J. L. Su, J. W. You*, L. Chen, X. Y. Yu, Q. C. Yin, G. H. Yuan, S. Q. Huang, Q. Ma, J. N. Zhang*, and T. J. Cui*, “MetaPhyNet: Intelligent design of large-scale metasurfaces based on physics-driven neural network,” J. Phys. Photonics, vol. 6, no. 3, pp. 1-9, May 2024. [3] J. W. Zhang, Z. Zhang*, J. N. Zhang*, J. W. Wu, J. Y. Dai, Q. Cheng, Q. S. Cheng, and T. J. Cui, “A novel two-stage optimization framework for designing active metasurfaces based on multi-port microwave network theory,” IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1603-1616, Feb. 2024. [4] Z Fang, Q. Zhou, J. Y. Dai, Z. J. Qi, J. N. Zhang*, Q. Cheng, and T. J. Cui*, “DOA estimation method based on space-time coding antenna with orthogonal codes,”IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1173-1181, Feb. 2024. [5] J. N. Zhang, J. W. You, F Feng, W. Na, Z. C. Lou, Q. J. Zhang, T. J. Cui, “Physics-driven machine-learning approach incorporating temporal coupled mode theory for intelligent design of metasurfaces”, IEEE Trans. Microw. Theory Techn., vol. 71, no. 7, pp. 2875-2887, Jul. 2023. [6] J. N. Zhang, S. Yan, F. Feng, J. Jin, W. Zhang, J. Wang, Q. J. Zhang, “A novel surrogate-based approach to yield estimation and optimization of microwave structures using combined quadratic mappings and matrix transfer functions,” IEEE Trans. Microw. Theory Techn., 2022, 70(8): 3802-3816. (入选IEEE TMTT Popular Articles) [7] J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang, “Adaptively weighted yield-driven EM optimization incorporating neuro-transfer function surrogate with applications to microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 518-528, Jan. 2021. [8] J. N. Zhang, F. Feng, W. Zhang, J. Jin, J. Ma, and Q. J. Zhang, “A novel training approach for parametric modeling of microwave passive components using Pade via Lanczos and EM sensitivities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp. 2215-2233, Jun. 2020. [9] J. N. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q. J. Zhang, “Polynomial chaos-based approach to yield-driven EM optimization,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp. 3186-3199, Jul. 2018.(入选IEEE TMTT Popular Articles) [10]J. N. Zhang, L. Chen, X. M. Lin, X. Y. Yu, Q. Ma, W.-B. Lu, J. W. You*, and T. J. Cui*, “Feature-assisted neuro-CMT approach to fast design optimization of metasurfaces,” IEEE Microw. Wireless Techn. Lett., vol. 34, no. 5, pp. 467-470, May 2024. [11]J. N. Zhang, J. Chen, Q. Guo, W. Liu, F. Feng, and Q. J. Zhang, “Parameterized modeling incorporating MOR-based rational transfer functions with neural networks for microwave components,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 379-382, May 2022. [12]J. N. Zhang, F. Feng, and Q. J. Zhang, “Rapid yield estimation of microwave passive components using model-order reduction based neuro-transfer function models,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 4, pp. 333-336, Apr. 2021.(入选IEEE MWCL Popular Articles) [13]J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang, “Efficient yield estimation of microwave structures using mesh deformation-incorporated space mapping surrogates,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 937-940, Oct. 2020.(入选IEEE MWCL Popular Articles) [14]F. Feng, J. Xue,J. N. Zhang*,M. Li, W. Liu, and Q. J. Zhang, “Concise and compatible MOR-based self-adjoint EM sensitivity analysis for fast frequency sweep,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 9, pp. 3829-3840, Sept. 2023. [15]W. Na, K. Liu, J. N. Zhang*, D. Jin, H. Xie, and W. Zhang, “An Efficient Batch-Adjustment Algorithm for Artificial Neural Network Structure Adaptation and Applications to Microwave Modeling,” IEEE Microw. Wireless Compon. Lett., vol. 33, no. 8, pp. 1107-1110, Aug. 2023. [16]J. Cui, F. Feng, J. N. Zhang*, L. Zhu, and Q. J. Zhang, “Bayesian-assisted multilayer neural network structure adaptation method for microwave design,” IEEE Microw. Wireless Compon. Lett., vol. 33, no. 1, pp. 3-6, Jan. 2023. [17]W. Na, K. Liu, W. Zhang, F. Feng, J. N. Zhang*, H. Xie, D. Jin, and Q. J. Zhang, “Advanced EM optimization using adjoint-sensitivity-based multifeature surrogate for microwave filter design,” IEEE Microw. Wireless Compon. Lett., vol. 34, no. 1, pp. 1-4, Jan. 2024. [18]L. Ma, Q. J. Zhang, W. Liu, and J. N. Zhang*, “Advances in Hybrid Format-Based Neuro-TF Techniques for Parametric Modeling of Microwave Components,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, IJNM, vol. 37, no. 2, pp. 1-23, May 2023. [19]Weicong Na, J. N. Zhang*, et al., “Parallel EM optimization using improved pole-residue-based neuro-TF surrogate and isomorphic orthogonal DOE sampling for microwave components design,”International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, IJNM, vol. 37, no. 2, pp. 1-16, Jul. 2023. [20]Q. Ren, Y. Lang, Y. Jia, X. Xiao, Y. Liu, X. Kong, R. Jin, Y. He, J. N. Zhang, J. W. You, W. E.I. Sha, and Y. Pang, “High-Q metasurface signal isolator for 1.5T surface coil magnetic resonance imaging on the go,” Optics Express, vol. 32, no. 6, pp. 8751-8762, Mar. 2024. [21]F. Feng, J. N. Zhang, J. Jin, W. Na, S. Yan, and Q. J. Zhang, “Efficient FEM-based EM optimization technique using combined Lagrangian method with Newton's method, IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp.2194-2205, Jun. 2020. [22]F. Feng,J. N. Zhang, J. Jin, W. Zhang, Z. Zhao, and Q. J. Zhang, Adjoint EM sensitivity analysis for fast frequency sweep using Matrix Pade via Lanczos technique based on finite element method, IEEE Trans. Microw. Theory Techn., vol. 69, no. 5, pp. 2413-2428, Mar. 2021. (入选IEEE TMTT Popular Articles)
专利: [1] 一种用于吸波超材料快速设计的特征辅助优化方法, 2024-03-08, 中国, 受理号:202410267318.X [2] 电磁场有限元快速频率分析的电磁灵敏度分析方法, 2023-5-2, 中国, 授权号:ZL 2021 1 0992300.2 [3] 一种用于求解电磁有限元方程的量子方法, 2022-11-15, 中国, 受理号:202211425125.X [4] 一种用于超表面智能设计的物理驱动机器学习方法, 2022-10-11, 中国, 受理号:202211239682.2 [5] 物理驱动的大规模超材料的智能设计方法, 2024-05-16, 中国,受理号:202410608970.3 [6] 一种用于两端口微带结构的电磁参数化建模方法,2023-07-31,中国,受理号:202310942855.5 [7] 基于神经网络传递函数的代理模型建模方法,2023-06-15,中国,受理号:202310702791.1 [8] 基于空间映射算法的微波元件高频电磁设计方法,2023-08-30,中国,受理号:202311105069.6
科研项目: 国家级: (1) 国家自然科学基金,电磁计算与射频EDA仿真技术,在研,主持。 (2) JWKJW,JWKJW基础加强项目课题,全空域****,420万元,在研,参与。 (3) 国家重点研发计划,“诊疗装备与生物医用材料”重点专项,临床专科化小视野磁共振显微成像技术研究及样机研制,2050万元,在研,参与,子课题负责人。 省部级: (1) 江苏省科学技术厅, 基础研究计划自然科学基金-青年基金项目, 面向高频微波器件成品率驱动设计的先进统计建模和优化技术, 20万元, 在研, 主持。 (2) 中央高校优秀青年团队,可编程超表面和量子编码超表面,400万元,在研,参与。 其他: 华为技术有限公司,Meta分频聚焦,80万元,在研,主持。 | |
欢迎对计算电磁学、电磁超表面设计优化、目标特性建模与优化设计、量子计算等方向感兴趣的本科同学加入课题组进行科研训练和毕业设计!课题组常年招收硕士、博士研究生,名额与经费充足,欢迎报考,并提供机会至国外知名大学交流访问! |